[image:]

Data Engineering Guide

Databricks SQL BI Integration Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Business Intelligence (BI) tools are the primary interface through which organizations derive value from their data investments. Databricks SQL's native integration with leading BI platforms enables self-service analytics at scale, combining the power of the Lakehouse with familiar visualization tools.
Strategic Value of BI Integration
The integration of Databricks SQL with enterprise BI tools delivers multiple strategic benefits:
Single Source of Truth: All BI tools connect to the same governed data in Unity Catalog, eliminating data silos and version inconsistencies
Real-Time Analytics: Direct connectivity to Delta Lake enables near-real-time dashboards without ETL delays
Reduced Infrastructure: Eliminate the need for separate data marts and OLAP cubes
Cost Optimization: Pay only for actual query execution rather than maintaining always-on analytics infrastructure
Supported Integration Patterns
Databricks SQL supports multiple connectivity options to accommodate different organizational requirements:
Native Connectors: Purpose-built integrations for Tableau, Power BI, and other leading platforms
ODBC/JDBC: Universal connectivity for any SQL-compatible tool
REST API: Programmatic access for custom applications and embedded analytics
Partner Connect: One-click setup for supported BI platforms
This guide covers configuration, optimization, and best practices for each major BI platform.
2. Connectivity Architecture
Understanding the connectivity architecture helps architects design scalable BI solutions.
2.1 Connection Flow
┌───┐
│ BI INTEGRATION ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ BI TOOLS LAYER │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Tableau │ │ Power BI │ │ Looker │ │ Custom │ │ │
│ │ │ Desktop/ │ │ Desktop/ │ │ │ │ App │ │ │
│ │ │ Server │ │ Service │ │ │ │ │ │ │
│ │ └────┬─────┘ └────┬─────┘ └────┬─────┘ └────┬─────┘ │ │
│ └───────┼─────────────┼─────────────┼─────────────┼────────────────────┘ │
│ │ │ │ │ │
│ ▼ ▼ ▼ ▼ │
│ ┌───┐ │
│ │ CONNECTIVITY LAYER │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Native │ │ ODBC/ │ │ REST API │ │ │
│ │ │ Connector │ │ JDBC │ │ (SQL API) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ AUTHENTICATION LAYER │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Personal │ │ Service │ │ OAuth │ │ │
│ │ │Access Token │ │ Principal │ │ (M2M) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SQL WAREHOUSE │ │
│ │ (Query Processing) │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ UNITY CATALOG │ │
│ │ (Governance & Access Control) │ │
│ └───┘ │
│ │
└───┘
2.2 Connection String Components
All BI tools require similar connection information:
	Component
	Description
	Example

	Server Hostname
	Workspace URL
	`adb-1234567890.12.azuredatabricks.net`

	HTTP Path
	Warehouse endpoint
	`/sql/1.0/warehouses/abc123def456`

	Port
	Always 443 for HTTPS
	`443`

	Authentication
	Token or OAuth
	Personal Access Token

	Catalog
	Unity Catalog name
	`production`

	Schema
	Default schema
	`analytics`

2.3 Authentication Options
Different authentication methods suit different use cases:
Personal Access Tokens (PAT): Best for individual analysts and development.
Generate PAT via API
import requests

workspace_url = "https://your-workspace.cloud.databricks.com"
headers = {"Authorization": "Bearer existing-token"}

response = requests.post(
 f"{workspace_url}/api/2.0/token/create",
 headers=headers,
 json={
 "comment": "Tableau Desktop Access",
 "lifetime_seconds": 86400 * 90 # 90 days
 }
)

token_info = response.json()
print(f"New token: {token_info['token_value']}")
Service Principals: Recommended for production BI servers.
Service Principal authentication (OAuth M2M)
from databricks.sdk import WorkspaceClient

Using client credentials
w = WorkspaceClient(
 host="https://your-workspace.cloud.databricks.com",
 client_id="your-service-principal-id",
 client_secret="your-service-principal-secret"
)

Service Principal should have:
- USE CATALOG on target catalog
- USE SCHEMA on target schemas
- SELECT on required tables
3. Tableau Integration
Tableau is one of the most widely used BI platforms, offering both desktop and server deployment options.
3.1 Tableau Desktop Configuration
Step 1: Install the Databricks Connector
The native Databricks connector provides optimized performance and full feature support.
Download the Databricks ODBC driver from the Databricks website
Install the driver on the Tableau Desktop machine
The connector appears as "Databricks" in Tableau's connection list
Step 2: Configure Connection
In Tableau Desktop:
Select "Databricks" from the connector list
Enter connection details:
	Field
	Value

	Server Hostname
	`your-workspace.cloud.databricks.com`

	HTTP Path
	`/sql/1.0/warehouses/your-warehouse-id`

	Authentication
	Personal Access Token

	Token
	Your PAT value

Step 3: Select Data
Navigate through the Unity Catalog hierarchy:
Catalog → Schema → Table/View
3.2 Tableau Server/Cloud Configuration
For production deployments, Tableau Server requires careful configuration for security and performance.
Published Data Source Setup:
<!-- Connection configuration in Tableau Server -->
<connection class='databricks'
 server='your-workspace.cloud.databricks.com'
 port='443'
 http-path='/sql/1.0/warehouses/your-warehouse-id'
 authentication='oauth'
 oauth-config-id='databricks-oauth'>
 <calculations>
 <calculation column='[Calculated Field]'
 formula='...' />
 </calculations>
</connection>
Embedding Credentials (Service Account):
-- Create dedicated service principal for Tableau Server
-- In Databricks, grant permissions:
GRANT USE CATALOG ON CATALOG production TO `tableau-service-principal`;
GRANT USE SCHEMA ON SCHEMA production.analytics TO `tableau-service-principal`;
GRANT SELECT ON SCHEMA production.analytics TO `tableau-service-principal`;
3.3 Tableau Optimization Best Practices
Use Extracts Strategically:
Tableau extracts can improve performance for complex dashboards but may create data staleness issues.
	Scenario
	Recommendation

	Real-time data needed
	Live connection

	Complex calculations
	Extract with scheduled refresh

	Large datasets
	Extract with incremental refresh

	Mobile access
	Extract (better offline support)

Custom SQL Optimization:
-- Instead of letting Tableau generate SQL, use Custom SQL for complex logic
SELECT
 DATE_TRUNC('day', order_date) as order_day,
 product_category,
 SUM(amount) as daily_sales,
 COUNT(DISTINCT customer_id) as unique_customers
FROM production.analytics.orders o
JOIN production.analytics.products p ON o.product_id = p.id
WHERE order_date >= DATEADD(day, -90, CURRENT_DATE)
GROUP BY 1, 2
Initial SQL for Session Setup:
-- Set session parameters for optimal performance
SET use_cached_result = true;
SET enable_photon = true;
4. Power BI Integration
Power BI offers both desktop and cloud-based analytics with deep Microsoft ecosystem integration.
4.1 Power BI Desktop Configuration
Native Connector Setup:
In Power BI Desktop, select "Get Data" → "Azure" → "Azure Databricks"
Enter connection details:
	Field
	Value

	Server Hostname
	`your-workspace.azuredatabricks.net`

	HTTP Path
	`/sql/1.0/warehouses/your-warehouse-id`

	Data Connectivity mode
	DirectQuery (recommended)

Authentication Flow:
Power BI supports multiple authentication methods:
Azure Active Directory: Recommended for enterprise deployments
Personal Access Token: For development and testing
4.2 Power BI Service (Cloud) Configuration
On-Premises Data Gateway:
For secure connectivity from Power BI Service:
Install the On-premises data gateway on a dedicated server
Configure the gateway with Databricks credentials
Publish datasets that use the gateway connection
Gateway Configuration:
Install gateway in standard mode
Configure data source in Power BI Service:
- Data Source Type: Databricks
- Server: your-workspace.azuredatabricks.net
- HTTP Path: /sql/1.0/warehouses/your-warehouse-id
- Authentication: OAuth2 or Key
4.3 DirectQuery vs Import Mode
DirectQuery sends queries directly to Databricks SQL for each visualization interaction:
	Pros
	Cons

	Always current data
	Higher latency

	No data size limits
	Depends on warehouse availability

	Row-level security works
	More expensive (more queries)

Import Mode loads data into Power BI's in-memory engine:
	Pros
	Cons

	Fast visualization
	Stale data between refreshes

	Works offline
	Size limits (1GB free, 10GB Pro)

	Lower query cost
	Scheduled refresh required

4.4 Power BI Optimization
Reduce Query Complexity:
-- Create pre-aggregated views for Power BI
CREATE OR REPLACE VIEW analytics.sales_summary AS
SELECT
 order_date,
 product_category,
 customer_segment,
 region,
 COUNT(*) as order_count,
 SUM(amount) as total_amount,
 AVG(amount) as avg_amount
FROM analytics.orders o
JOIN analytics.customers c ON o.customer_id = c.id
JOIN analytics.products p ON o.product_id = p.id
GROUP BY ALL;
Query Folding Verification:
Power BI's query folding pushes transformations to the data source. Verify folding:
In Power Query Editor, right-click a step
Select "View Native Query"
If available, folding is working
Aggregations Feature:
┌──┐
│ POWER BI AGGREGATIONS │
├──┤
│ │
│ User Query Aggregation Table Detail Table │
│ ┌─────────┐ ┌───────────────┐ ┌────────────────┐ │
│ │ SUM by │ ───▶ │ Pre-computed │ or │ Full detail │ │
│ │ Month │ │ monthly totals│ │ (if needed) │ │
│ └─────────┘ └───────────────┘ └────────────────┘ │
│ │
│ Power BI automatically routes queries to aggregation table │
│ when possible, falling back to detail for drill-through │
│ │
└──┘
5. Looker Integration
Looker (Google Cloud) provides a semantic modeling layer that sits between raw data and visualizations.
5.1 Looker Connection Setup
Database Connection:
In Looker Admin, navigate to Database → Connections
Select "Databricks" as the dialect
Configure connection:
	Field
	Value

	Name
	`databricks-production`

	Host
	`your-workspace.cloud.databricks.com`

	Port
	`443`

	Database
	`production.analytics`

	Authentication
	OAuth or Database Account

5.2 LookML Development
Looker's semantic layer (LookML) defines business logic centrally.
Model Definition:
models/sales.model.lkml
connection: "databricks-production"
include: "/views/*.view.lkml"

explore: orders {
 label: "Sales Analysis"
 description: "Order-level sales data with customer and product attributes"

 join: customers {
 type: left_outer
 sql_on: ${orders.customer_id} = ${customers.id} ;;
 relationship: many_to_one
 }

 join: products {
 type: left_outer
 sql_on: ${orders.product_id} = ${products.id} ;;
 relationship: many_to_one
 }
}
View Definition:
views/orders.view.lkml
view: orders {
 sql_table_name: production.analytics.orders ;;

 dimension: id {
 primary_key: yes
 type: number
 sql: ${TABLE}.order_id ;;
 }

 dimension_group: order {
 type: time
 timeframes: [raw, date, week, month, quarter, year]
 sql: ${TABLE}.order_date ;;
 }

 dimension: amount {
 type: number
 sql: ${TABLE}.amount ;;
 value_format_name: usd
 }

 dimension: amount_tier {
 type: tier
 tiers: [0, 100, 500, 1000, 5000]
 style: integer
 sql: ${amount} ;;
 }

 measure: total_amount {
 type: sum
 sql: ${amount} ;;
 value_format_name: usd
 }

 measure: order_count {
 type: count
 drill_fields: [id, order_date, amount, customers.name]
 }

 measure: average_order_value {
 type: average
 sql: ${amount} ;;
 value_format_name: usd
 }
}
5.3 Looker Optimization
Aggregate Awareness:
Create aggregate table for common queries
explore: orders {
 aggregate_table: daily_sales {
 query: {
 dimensions: [order_date]
 measures: [total_amount, order_count]
 }
 materialization: {
 sql_trigger_value: SELECT MAX(order_date) FROM production.analytics.orders ;;
 }
 }
}
PDTs (Persistent Derived Tables):
view: customer_lifetime_value {
 derived_table: {
 sql:
 SELECT
 customer_id,
 COUNT(*) as order_count,
 SUM(amount) as lifetime_value,
 MIN(order_date) as first_order,
 MAX(order_date) as last_order
 FROM production.analytics.orders
 GROUP BY customer_id ;;

 datagroup_trigger: daily_etl # Rebuild after ETL completes
 indexes: ["customer_id"]
 }

 dimension: customer_id {
 primary_key: yes
 type: number
 }

 dimension: lifetime_value {
 type: number
 value_format_name: usd
 }

 dimension: lifetime_value_tier {
 type: tier
 tiers: [100, 500, 1000, 5000, 10000]
 sql: ${lifetime_value} ;;
 }
}
6. dbt Integration
dbt (data build tool) transforms data directly in the warehouse, enabling analytics engineering workflows.
6.1 dbt Project Configuration
profiles.yml:
your_project:
 target: prod
 outputs:
 dev:
 type: databricks
 catalog: development
 schema: "{{ env_var('DBT_SCHEMA', 'dbt_' ~ env_var('USER')) }}"
 host: your-workspace.cloud.databricks.com
 http_path: /sql/1.0/warehouses/dev-warehouse-id
 token: "{{ env_var('DBT_TOKEN') }}"
 threads: 4

 prod:
 type: databricks
 catalog: production
 schema: analytics
 host: your-workspace.cloud.databricks.com
 http_path: /sql/1.0/warehouses/prod-warehouse-id
 token: "{{ env_var('DBT_PROD_TOKEN') }}"
 threads: 8
dbt_project.yml:
name: 'analytics_project'
version: '1.0.0'

profile: 'your_project'

model-paths: ["models"]
analysis-paths: ["analyses"]
test-paths: ["tests"]
seed-paths: ["seeds"]
macro-paths: ["macros"]

target-path: "target"
clean-targets:
 - "target"
 - "dbt_packages"

vars:
 start_date: '2020-01-01'

models:
 analytics_project:
 staging:
 +materialized: view
 marts:
 +materialized: table
 +file_format: delta
6.2 dbt Models for BI
Staging Model:
-- models/staging/stg_orders.sql
{{ config(materialized='view') }}

SELECT
 order_id,
 customer_id,
 product_id,
 order_date,
 amount,
 status,
 created_at,
 updated_at
FROM {{ source('raw', 'orders') }}
WHERE order_date >= '{{ var("start_date") }}'
Mart Model (Optimized for BI):
-- models/marts/fct_daily_sales.sql
{{ config(
 materialized='table',
 file_format='delta',
 partition_by=['order_month'],
 cluster_by=['product_category', 'customer_segment']
) }}

WITH orders AS (
 SELECT * FROM {{ ref('stg_orders') }}
),

customers AS (
 SELECT * FROM {{ ref('dim_customers') }}
),

products AS (
 SELECT * FROM {{ ref('dim_products') }}
)

SELECT
 o.order_date,
 DATE_TRUNC('month', o.order_date) as order_month,
 p.product_category,
 c.customer_segment,
 c.region,
 COUNT(*) as order_count,
 COUNT(DISTINCT o.customer_id) as unique_customers,
 SUM(o.amount) as total_amount,
 AVG(o.amount) as avg_order_value
FROM orders o
LEFT JOIN customers c ON o.customer_id = c.customer_id
LEFT JOIN products p ON o.product_id = p.product_id
GROUP BY ALL
6.3 dbt Testing for Data Quality
models/marts/fct_daily_sales.yml
version: 2

models:
 - name: fct_daily_sales
 description: "Daily sales aggregations for BI dashboards"
 columns:
 - name: order_date
 description: "Date of orders"
 tests:
 - not_null
 - dbt_utils.not_null_proportion:
 at_least: 0.99

 - name: total_amount
 description: "Sum of order amounts"
 tests:
 - not_null
 - dbt_utils.expression_is_true:
 expression: ">= 0"

 - name: order_count
 tests:
 - not_null
 - dbt_utils.expression_is_true:
 expression: "> 0"
7. JDBC/ODBC Configuration
For tools without native connectors, JDBC/ODBC provides universal connectivity.
7.1 JDBC Configuration
Driver Download: Download the Databricks JDBC driver from the Databricks documentation.
Connection URL Format:
jdbc:databricks://<server-hostname>:443/default;
 transportMode=http;
 ssl=1;
 httpPath=<http-path>;
 AuthMech=3;
 UID=token;
 PWD=<personal-access-token>
Java Example:
import java.sql.*;

public class DatabricksJDBCExample {
 public static void main(String[] args) {
 String url = "jdbc:databricks://your-workspace.cloud.databricks.com:443/default;" +
 "transportMode=http;ssl=1;" +
 "httpPath=/sql/1.0/warehouses/your-warehouse-id;" +
 "AuthMech=3;UID=token;PWD=your-access-token";

 try (Connection conn = DriverManager.getConnection(url)) {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT * FROM production.analytics.orders LIMIT 10"
);

 while (rs.next()) {
 System.out.println(rs.getString("order_id") + ": " +
 rs.getDouble("amount"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}
7.2 ODBC Configuration
DSN Configuration (Windows):
[Databricks]
Driver=Simba Spark ODBC Driver
Host=your-workspace.cloud.databricks.com
Port=443
SparkServerType=3
AuthMech=3
ThriftTransport=2
SSL=1
HTTPPath=/sql/1.0/warehouses/your-warehouse-id
UID=token
PWD=your-access-token
DSN Configuration (Linux/Mac):
/etc/odbc.ini or ~/.odbc.ini
[databricks-production]
Driver=/opt/simba/spark/lib/64/libsparkodbc_sb64.so
Host=your-workspace.cloud.databricks.com
Port=443
SparkServerType=3
AuthMech=3
ThriftTransport=2
SSL=1
HTTPPath=/sql/1.0/warehouses/your-warehouse-id
UID=token
PWD=your-access-token
8. Performance Best Practices
Optimizing BI integrations requires attention to both Databricks configuration and BI tool settings.
8.1 Warehouse Sizing for BI
	User Count
	Query Complexity
	Recommended Size
	Clusters

	1-10
	Light
	Small
	1-2

	10-50
	Moderate
	Medium
	2-5

	50-200
	Heavy
	Large
	5-10

	200+
	Mixed
	X-Large
	10+

8.2 Query Design Patterns
Pre-Aggregation Strategy:
-- Create aggregation layers for common BI queries
CREATE OR REPLACE TABLE analytics.sales_hourly AS
SELECT
 DATE_TRUNC('hour', order_date) as order_hour,
 product_category,
 region,
 COUNT(*) as order_count,
 SUM(amount) as total_amount
FROM analytics.orders o
JOIN analytics.products p ON o.product_id = p.id
GROUP BY ALL;

-- BI tools query aggregated table instead of detail
Semantic Layer Views:
-- Create views that encapsulate business logic
CREATE OR REPLACE VIEW analytics.v_customer_360 AS
SELECT
 c.customer_id,
 c.customer_name,
 c.segment,
 c.region,
 COALESCE(orders.order_count, 0) as lifetime_orders,
 COALESCE(orders.total_spent, 0) as lifetime_value,
 orders.first_order_date,
 orders.last_order_date,
 DATEDIFF(day, orders.last_order_date, CURRENT_DATE) as days_since_last_order,
 CASE
 WHEN orders.last_order_date >= CURRENT_DATE - INTERVAL 30 DAYS THEN 'Active'
 WHEN orders.last_order_date >= CURRENT_DATE - INTERVAL 90 DAYS THEN 'At Risk'
 ELSE 'Churned'
 END as customer_status
FROM analytics.customers c
LEFT JOIN (
 SELECT
 customer_id,
 COUNT(*) as order_count,
 SUM(amount) as total_spent,
 MIN(order_date) as first_order_date,
 MAX(order_date) as last_order_date
 FROM analytics.orders
 GROUP BY customer_id
) orders ON c.customer_id = orders.customer_id;
8.3 Caching Configuration
Query Result Cache:
-- Verify caching is enabled
SET spark.databricks.io.cache.enabled = true;

-- Design cache-friendly queries
-- Avoid: Functions that prevent caching
SELECT *, CURRENT_TIMESTAMP() FROM orders;

-- Prefer: Deterministic queries
SELECT * FROM orders WHERE order_date = '2025-01-15';
BI Tool Caching:
	Tool
	Cache Location
	Configuration

	Tableau
	Tableau Server
	Configure extract refresh schedules

	Power BI
	Power BI Service
	Configure dataset refresh schedules

	Looker
	PDTs
	Configure datagroup triggers

9. Security Considerations
BI integrations must maintain enterprise security standards.
9.1 Authentication Best Practices
	Use Case
	Recommended Auth
	Rationale

	Desktop tools
	Personal Access Token
	User-specific access

	BI Server
	Service Principal
	Shared, auditable access

	Embedded analytics
	OAuth M2M
	Secure, rotatable

9.2 Access Control Integration
-- Unity Catalog permissions flow to BI tools
-- Users see only what they're authorized to access

-- Grant BI group access to analytics schema
GRANT USE CATALOG ON CATALOG production TO bi_users;
GRANT USE SCHEMA ON SCHEMA production.analytics TO bi_users;
GRANT SELECT ON SCHEMA production.analytics TO bi_users;

-- Row-level security applies automatically
-- Users querying through Tableau/Power BI see filtered data
9.3 Audit and Compliance
-- Query BI tool activity
SELECT
 user_name,
 client_application_id, -- Identifies BI tool
 COUNT(*) as query_count,
 SUM(bytes_scanned) / (1024*1024*1024) as gb_scanned
FROM system.access.audit
WHERE action_name = 'commandSubmit'
 AND service_name = 'sql'
 AND event_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
GROUP BY user_name, client_application_id
ORDER BY query_count DESC;
10. Troubleshooting Guide
10.1 Common Connection Issues
	Issue
	Cause
	Solution

	Connection timeout
	Warehouse stopped
	Enable auto-start or increase auto-stop

	Authentication failed
	Expired token
	Generate new token

	Access denied
	Missing permissions
	Grant USE CATALOG/SCHEMA

	SSL error
	Certificate issue
	Update ODBC driver

10.2 Performance Issues
	Symptom
	Likely Cause
	Solution

	Slow initial query
	Warehouse cold start
	Use min_clusters > 0

	Increasing latency
	Insufficient capacity
	Scale warehouse or add clusters

	Timeouts
	Query too complex
	Optimize query or increase timeout

10.3 Data Freshness Issues
	Symptom
	Cause
	Solution

	Stale dashboard data
	Cache not refreshed
	Configure appropriate refresh

	Missing recent data
	ETL delay
	Check pipeline status

	Inconsistent values
	Multiple queries
	Use extract snapshot

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

